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It has been assumed until now that Papkovich [l, 21 was the first author to derive the 
generalized orthogonality relation and to pose the problem of simultaneous expansion 
of two independent functions in series in homogeneous solutions. This problem has been 
dealt with within the framework of the plane problem of elasticity theory by Grinberg 
[3], Prokopov [4], Vorovich and Koval’chuk 153, and by several foreign authors whose stu- 
dies are summarized in survey [6]. 

However, as was recently discovered, Papkovich’s paper [l] gave impetus to studies of 
a problem whose history dates back to a variant of the tree-dime~ional problem of the 
theory of elasticity. We are referring to a paper by Schiff [8] (1883) which contains a 
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derivation of the general orthogonality relation for the axisymmetrlc homogeneous solu- 
tions of the first fundamental problem of elasticity theory (that of an infinite hollow 
cylinder). Schfff used this relation to obtain the exact solution of the problem of axisym- 
metric straining of a finite solid cylinder with two arbitrary given functions at its end 
faces. One of these functions describes the shearing stresses ; the other function is related 

to the volume expansion, but cannot be determined in advance from the mechanical con- 
ditions. In the same’paper Schiff also solves for the first time the problem of torsion of 
a finite cylinder by forces distributed uniformly over its end faces. The only author who 
made any use of Schiff’s method was Steklov [S]. The relegation of his method-to obli- 
vion is apparentty a~ibutable to its incorrect appraisal by Filon in his widely known 

paper Elo]~ 
We shall extend Schiff’s relation to other forms of homogeneous boundary conditions 

and use the Fourier method to solve certain particular problems concerning a finite elas- 
tic cylinder. We shall also consider the possibility of exact satisfaction of either of the 

two given conditions at the end of a cylinder in the general case of loading when the 

other condition has been satisfied approximately. 

1. Let us write out Schiff’s solution, abbreviating it by the introduction of Papkovich- 

Neuber functions interrelated in a certain way. In the cylindrical coordinates r, z, cp the 
projections of the displacement vector in the axisymmetric case are given by the formu- 
las [Xl] 1 

u = I% --: 4 (5 - 6) -Z- (r& -t_ z& + &) & 

1 (1.1) 

w=&- 4(1__-5) z a (r& + 23, + B3) 

where CT is the Poisson coefficient ; the functions Ba and B 3 satisfy the Laplace equation 

(1.2) 

and the function B, is the coefficient of $ in the expression for the harmonic function 
A (B,c+') = 0, i. e. it satisfies the equation 

Let us set 
(1.3) 

(1.4) 

where Ba and B, are harmonic functions. We shall limit ourselves to functions symmetric 
with respect to the middle plane z = 0 of the cylinder (the antisymmetric case can-be 

analyzed in precisely similar fashion), setting 

B+=== 5 pk(r)chmkz, Ba= 5 qlr(r)chmllz (1.5) 
k=l k=l 

By virtue of (1.2), the functions.pk (r) and r)k (r) are the solutions of the Bessel equation 

Pk,” @) + f Plf’ (r) + mk2PI, (r) = % ‘Ik’ (r) + + gti’ @) + mkql, (‘) = o (1.6) 

The numbersmk are determined by the boundary conditions. Substituting first (1.4) 
and then (1.5) into (1.1). we obtain 

co 

fr) + 
mk3rPk fp) ch m 

1 4fi --a) i 
i. 5 (1.7) 



Let us introduce the function ak (r) (Omitting the argument for brevity), 

rpk’ al T Pk 
%- 4(1---a) - 2 (I.81 

which satisfies the equation 
EL” + f 

mkZpk 
-- 

Ejf’ i- mb2Ek - 1 - 0 (1.9) 

The functions ah and ok enable us to simplify expressions (1.7) for the displacements, 
cc co 

U= 2 tEr’ + P,') ch y”, w= 2 mk(Ek-pk)shmkz (1.10) 

k=l 

The components of the stress tensor become 
k=l 

a,=2G 5 [8kn+pkn-~]ehmx.z 

k=l 

Q,= 2G 5 
I , 

[ 
‘k +pk 

am2koKr- 

(I- o) I ch mkZ r 
k=l 

6,=2G 5 [(ak-pk)mk2--~.]chm~z 
k=l 

(1.11) 

(1.12) 

(1.13) 

co 

z rz = 2G 2 ak’mk sh ml;” 
k=l 

(1.14) 

Let us show that the generalized orthogonality relation 
TZ 

s 
(Ej’pk’ + ek’pj’) r dr = 0, i $1 k 

rl 

(1.15) 

obtained by Schiff in the absence of normal and shearing stresses at the boundary sur- 

faces of a hollow infinite cylinder rl < r < r2 is also valid under other homogeneous 
conditions. 

We begin by considering the second fundamental problem of elasticity theory, 

u = w = 0 for r = r, and r = rz (1.16) 

Let us introduce the function l& = ok + Ek. By (1.6) and (1.9) this function satisfies 

equation 1 mkaPk 
8,” + 7 8,’ + mkzek = 1-_3 (1.17) 

By (1.10). boundary conditions (1.16) become 

6d = 6, ek - 2pk = 0 for r = rl and r = r~ (I.@ 

These conditions constitute a homogeneous system of four algebraic equations in the 
four arbitrary constants occurring in the functions tlk and pk. The zeros of the determi- 
nant of the system determine the numbers mk; its nontrivial solution gives three of the 

constants in terms of the fourth. Equation (1.17) yields 

r [+ (rek")tj = r(z - mkqk') p.19) 
Integration by parts yields 
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or, with allowance for the first condition of (1.18), 

5 [f @-#I lTJ;;*rdr =: 5 [; (r&J)‘] Oj’r Jr 

T1 r1 

By virtue of this equation, expression (X.19) implies that 
r* ro 

(FEZi - r?zk2) 
s 

6.‘@ ‘rdr -_ - 1 R s 
(m~p~~~’ - rn~pj’O,‘) r dr 

On the other hand, ‘* 
rt 

(1.21) 

r2 3 

= mk2 s , . r= 
- BjOpr i- i _ o S Bj (rp,‘)’ dr = mlr2 S OjO$dr -I- r'f PI TX 

l 

(1.22) 

71 
Interchanging the subscripts i and k,.we obtain 

I 

S 
rr 

t3j’Bkzrdr = rniz S i3j@2rdr + & (r8~pj‘~~ - &{,pj%ktdr (1.23) 
71 r1 rt 

Let us multiply both sides of identities (1.22) and (1.23) by mj’z and m2, respectively. 

and substract the second from the first. 

(rnc - rnz) t $‘E+‘rdr =z: A) (rp,‘Ojmi2 - rpj’8,m<)z - 

r1 
ra 

(1.24) 

Equating the left sides of (1.21) and (1.24) and recalling the second condition of 
(I. X3), we obtain 

T? 1‘) 
m;1” 1 ,“j” 1 (ejpk’ + er’p;) idr zz 2 (m;2~Gmk2f 5 pp’pj’rdr - 

r1 +I 
r, 

- T&- (rPiPjmj2 - v~Ppk2)G; = & I(rPj’Y Ppk S - (rp,‘)’ pjmc] dr = 0 

+I 
QED. 

Let the hollow cylinder be subject to sliding support conditions, i.e. let ~~~ = u = 0 
for r = r1 and r = r-2. We can use the same proof procedure in this case. Setting @A = 
= 8k and recalling that sk‘ = ok’ = 0 at the boundary of the cylinder for r = r, and 
r = r~ , we obtain 

(rn; - rn$) f 

T$ 

=cj’zX’rdr = - &S (rnRzpiEi - mjZp;ah.*) rdr (1.25) 
fl ri 
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(1.25) 

(1.27) 

7. 

s ra 72 

a.‘~ ‘rdr = mj” s 1 
3 k ajekrdr - - 

l--B s 
pj’ek’rdr 

?I TI r1 

(mt- m:) i Ej’ek’rdr = - & r (mjzpk’ej:- m;pi’ekf) r dr 
PI PI 

instead of Eqs. (1.21). (1.23). (1.24), respectively. 
Relations (1.25) and (1.27) immediately imply generalized orthogonality (1.15). 
Finally, let the conditions at the boundary surfaces be w = 0, ur = U. From (1.10) 

and (1.11) we have 
ek = ok, ek’ f pk’ + rn&eh = 0 for r = rl and r = r? (1.28) 

Integrating by parts and recalling the first condition of (1.28). we obtain 

This expression and the equation 

imply that 
r!~,r,k~,‘j=rm,.(~-,,‘~ 

(mi* - rni2) 5 ej’ek’rdr = - &- 5 (m2pk’ej’ - mj2pj‘Ek’) rdr - 

Tl 1’1 

(1.29) 

Further, proceeding as in the derivation of (1.22) and (1.24), we arrive at the identities 
r. ts 

s ej’e;rdr = mk2 
s 

rejekdr f & ( repI,‘):: + (ejck’r):; - & i p,c;‘ej‘rdr (1.30) 

r1 71 7, 
ra rt 

S 

1 
(mj2 - mk2) ej’ek’rdr = - 1 _ Q 

S 
[mjzpk’Ej’ - mh2pi’ErL’] rdr I- 

rl Tl 

+ [mjz'Ej (-+& + e,lt) - r,2,b2rep (1% + Ed’ j]I (1.31) 

Equating the 1°C sides of (1.29) and (1.31), we obtain 

cm;--m,f)S ( pk'ej' f P~'E%') rdi - [mjhj (p,' + F~')- mh.*ekr (pi' -+ ej')]::: = 0 

Tl 

By virtue of the second condition of (1.28) the terms outside the integral in the sum 

amount. to zero. This fact implies relation (1.15). 
Without giving the proofs, we note that this relation is also valid for problems in which 

the four types of homogeneous boundary conditions at the inner and outer surfaces of the 
cylinder occur in various combinations. Specifically, those cases where the sliding support 
conditions are given at the inner surface also cover the problems concerning a solid cy- 
linder.In fact, the displacements and stresses in a solid cylinder can be expressed in terms 
of Bessel functions of the first kind by virtue of their boundedness at the axis. The proper- 

ties of Bessel functions of the first kind, (1.8) and (1.6) for r = 0 imply that Ed = Pk’ =O. 
or that u = t,, = 0. 

2, Let us consider the problem of equilibrium of a hollow elastic cylinder rl < r < ~4, 
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-- I < z g I at whose end faces we have the following given tangential displacements 
and normal stresses symmetric with respect to the middle plane z = 0.: 

u = f1 (r), uz’= fz (r) for z = + I, rl d r < h (2.1) 

The boundary conditions at cylindrical surfaces can always be reduced to homogeneous 

conditions by suitable alteration of the functions fl (r) and fz (4. The homogeneous con- 
ditions, whose form we shall for the moment leave unspecified, determine the character- 
istic numbers mA and relate the functions ek (r) and Pk (4, leaving only one of the four 

arbitrary ~~~Sta~~ a& tit ek (r) = akrp (r), pk = u&$, (r) 

so that the functions Yk (r) and 6k (r) satisfy the same relations (1.6). (1.9), (1.15). 
BY virtue of conditions (2. I), formulas (1.13),( 1.10) and Ee (1.9) yield 

03 ,,+a 

Rewriting these equations in the form 

PI’ (r) = (rfl (r))’ - 

(2.3) 

and making use of genera&-red orthogonali~ relation (1.X), we obtain the coefficients 
ak for any homogen~~ conditions, 3 r?. 

a& = 12 chrn{.l 
s 

y[;tik’rf!rj-’ 
s 

(FCk + ~z~k’~dr 

l-1 7.1 

Here the functions Fl and 8’s are the primitives of the functions F; and Fs’ . This gene- 
rally makes it difficult to determine the coefficients ak. If rigid fastening (ad = - pk’, 

ek = Pk) or sliding support (&k’ = ok’ = 0) conditions (or their combinations) are given 
at ihe boundary surfaces r = r1 and r = rz of the cylinder, then the coefficients aH. can 
be found from another formula which does not contain primitives. Let us multiply Eq. 
(2.2) by Tj, add to it Eq. (2.3) multiplied by fij , and integrate the result by parts. By 
virtue of (1.15) we obtain 

Ta rr 

s 
(Fl’rj i_ F2’6j) dr = g (al. (rjtig’ f ‘ck‘6j) r Ch mk&F + 29 Ch mjf 

f 
yj’6j’rdr 

Tl k=l 71 

The above conditions make the terms under the summation sign amount to zero.Hence, 
7% rt 

ak = [2 66 T+ S yk’&‘rdr]- S (F,‘r, + Fa’&) dr l-1 7-1 
The same procedure can be used to solve the problem of a cylinder with the shearing 

stresses and normal displacements given at its ends, i. e. 

t,, = fi (r). w = f2 (r) for 2 = A 1, rl d r < r2 

Formulas (1.14) and (1.10) imply that 

$1 (r) = 2G jj akrk’mk sh mkl, fa(r)= jj ak(~~‘-6~)~~hm~~ 
P=l le=t 

Generalized orthogonality relation (1.15) yields 
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72 r; 

ak = [hGmk sh mkt s Tk’6ird’]-’ [i/l- 
\ ZGiil Tk’ + flw] rdr 

?I r1 

This formula contains the derivative of the function f~ (r) only, so that the solution 
does not take account of the constant component of the normal displacement and is valid 
for problems which have the homogeneous condition w = 6 given at one or both of the 

cylindrical surfaces. To render it suitable in the case where the normal and shearing 

stresses are given at the side surface we need merely add the elementary solution of the 
problem of a cylinder under normal tensile stresses c distributed uniformly over its end 

faces. 

8, Following Papkovich [lf. we can also apply the generalized o~hogonali~ relation 

to the fundamental problems of elasticity theory concerning a finite hollow cylinder. 
This yields a solution closest to the exact one in the sense that of the eight conditions 
given at the four boundary surfaces six are satisfiable by the Fourier method, while the 
remaining two (one at each end) are satisfied approximately. Other familiar methods 
can be used to satisfy four or all eight of the conditions. 

For example, let us consider the first fundamental problem of elasticity theory for a 
finite solid cylinder 0 f r .< rIr -- 1 < z $ 1 with homogeneous conditions at its side 

surface and symmetric conditions at its ends. 

4 = %Z = 0 for r = r1 (3.1) 

c,=Jr(r). trz=J;?(r) for z=fl (O,<r<rl) (3.2) 

We assume that the principal stress vector at the ends of the cylinder has been reduced 

to zero by addition of the suitable elementary solution. Formulas (1. II), (1.14) and Eqs. 
(1.8), (3.1) yield the familiar characteristic equation which determines the numbers mk 

[2(1-a)- rnk++~~] J12 (mhrl) - mk2r12J02 (mhrl) = 0 

and the relationship between the functions eh and PIL. 

Tk = ((3 _ 25) Jo (mgl) - rlmkJo (mkrl)] Jo tmkr) + rmkJ1 lmkr) 

2u - a) Jl Ovd 2 (1 - 0) - JO (mkr) 

By (3.2),(1,13) and (1.9) we have _ 

fx(r)=2G fij ( A)chmkl akmk Tk- l_-a 
X=1 

Let us introduce the function 30 
H (r) = 2G 2 armk2rk’ ch mkl 

k=t 

(3.5) 

which remains unknown for the time being, and subtract_from it the function fr’ (r). 
ed 

Reca11*g (3* 4)’ we Obtain H (r) _ jr’ (r) - 1 2:, 2 akmk?6k* ch mkl 

k=l 

(3.6) 

Now let us multiply (3.5) by tQj’, add it to Eq. (3.6) multiplied by (1 - o) qj’, and 

integrate the result over r from 0 to r,. 
By virtue of (1.5) we have 7, 7.1 

s s 

(3.7) 
lfk = [4GmkZ ch mkE ~k’8&frdrj-’ [tf --)Tk’(H(r) - fl'fr)) +fl@)~k'l &I- 

O 0 
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Let us write out the function H (r) as an expansion in some complete system of func- 
tions J& (r) , 

H (r) = 5 c,$, (r) (3:8) 

We can find the coefficients c, by means of the second boundary condition of (3.2). 
Substituting (3.8) into (3. ‘I), then (3.7) into (1.14). and changing the order of summation, 
we arrive at the relation Cc 

2 cn& (r) = T (r) (3.9) 

I-5 2.7 th mkl 3 
T(r) = j 2 (r) + 7 2 7 

[\ 
(3.11) 

k=l ” ;; 0 

from which we can determine the required coefficients C, by the orthogonalization pro- 
cess of Schmidt. 

It is convenient to take the eigenfunctions of the Sturm-Liouville problem for the Bes- 

sel equations as our $!,1 (r) . This allows us to compute the corresponding integrals in for- 
mula (3.10) with the aid of tables of indefinite integrals. The suitable boundary condi- 
tions for the Sturm-Liouville problem can be chosen readily on the basis of homogeneous 

conditions (3.1) and expansion (3.5) of the function H (r). For example, in our problem 
the condition ak’ = 0 or, according to (3.5). H (r) = 0 for r = 0 and r = r1 means that 
that the eigenfunctions can be conveniently taken in the form 

%” (r) -!- + %‘(r).+ (P,’ + -&) & (r) = 0 

% (r) = 0 for’r=O and.r=r, 

i.e. $‘n (r) = J, (p,r), where the numbers pn satisfy condition Jr (p,,rJ = 0. 

In conclusion we note that any other condition at the ends of the cylinder can be ex- 
actly satisfied by the same procedure. For example, if this condition is for the shearing 
stress rrc,,, then instead of (3.5) we set oc 

H(r) = 2G 2 arm& sh mrl 
k=l 
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NOTE ON THE ERRORS APPEARING IN THE BOOK 

~CO~LU~T ~P~~E~~T~C ~CTIUN~~ BY L.J.~~~R 
PMM Vol. 33, Nn2, 1969, pp. 383-384 
M. E, AVERBIJKH and L. E. BORUKHOV 

(Saratov) 
(Received June 20, 1968) 

Erroneous formulas of expansion of the Kummer and Whittaker functions of the first kind 
in terms of cylindrical functions given in a monograph [l] by Slate& are corrected. 

Expansions of functions ,F, (a, b, 5) and Mktrn (2) into series in cylindrical functions 

are found useful when tables covering the required interval of variation of parameters 

are not available. Slater gives such expansions in [l]. unfortunately all four formulas 
appearing in their final form in Sect, 2.7.3 are erroneous. 

Fallacy of Formulas (2.7.14) and (2. ‘7.16) becomes obvious on applying them to al- 
ready known cases. Indeed, when n = e -j- r/2 and b = 2n + 2. Formula (2,7.14) yields 

IF1fn+‘/~,2n+~,r]=22*r(,fe ‘f%-n& (l/22) 

which contradicts the particular Formula (2.7.1). On putting k = 0, Formula (2.7.16) 

yields Ml),m (z) = 2mr (m)a”zm (‘/z 2) 

which in turn contradicts the exact Formula (1.8.11) (see also (9.235) of [2]). 
On checking we have found rhat the error was caused by the incorrect computation in 

[l] of the function ,,F, (; b, Z) on passing from Formula (2.7.10) to (2.7.14) and (2.7.15). 
and the function was transferred, as it stood, into (2.7.16) and (2.7.17). Since the same 
error appears in all four formulas, we shall compute rF1 (a, b, z) and give the exact 

result for Mk,m (4. 

BY (2.7. J.1) we find 


